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SUMMARY

Humans can learn continuously grasping various objects dexterously. This ability
is enabled partly by underlying neural mechanisms.Most current works of anthro-
pomorphic robotic grasping learning lack the capability of continual learning (CL).
They utilize large datasets to train grasp models and the trained models are
difficult to improve incrementally. By incorporating several discovered neural
mechanisms supporting CL, we propose a neuro-inspired continual anthropomor-
phic grasping (NICAG) approach. It consists of a CL framework of anthropomor-
phic grasping and a neuro-inspired CL algorithm. Compared with other methods,
ourNICAGapproach achieves better CL capabilitywith lower loss and forgetting,
and gets higher grasping success rate. It indicates that our approach performs
better on alleviating forgetting and preserving grasp knowledge. The proposed
system offers an approach for endowing anthropomorphic robotic handswith the
ability to learn grasping objects continually and has great potential tomake a pro-
found impact on robots in households and factories.

INTRODUCTION

Humans are able to learn continuously grasping various objects dexterously throughout their lifetime under

an endless variety of ever-changing scenarios. This ability is from two aspects. One is the exquisite flexibility

and precision of the human hand. Another is the continual learning (CL) capability of the human brain, based

on which, the dexterous grasping skill is acquired during childhood and further refined throughout life.

Biologists have tried to identify a number of underlying mechanisms that support CL. Some typical biolog-

ical mechanisms include: complementary learning system (CLS),1 episodic replay,2 and meta-plasticity.3

CLS theory1 holds that two learning systems are possessed by mammalians, i.e., the hippocampus system

and the neocortex system. The first allows for the rapid learning of the specifics of individual experiences

which will, in turn, be played back over time to the second for acquiring structured knowledge gradually.

Replay is the reactivation of neuronal activity patterns, in which neural patterns that had previously

occurred during waking re-occur during later rest or sleep.2 Replay appears in the hippocampus and

neocortical areas, is selective and partial, and benefits subsequent memory. Schapiro et al.4 suggest

that human hippocampal replay during rest prioritizes weakly learned information. Metaplasticity is the

ability of a synapse to be modified depending on its internal biochemical states,3 which then depends

on the history of synaptic modifications and recent neural activity. An instantiation of metaplasticity is reg-

ularization or normalization, with which consolidated knowledge can be protected from forgetting through

synapses with a cascade of states yielding different levels of plasticity.5 Especially, in biological networks,

normalization and synaptic changes co-occur with replay.6

Anthropomorphic grasping is a critical skill for robotics because robots generally need to grasp an object in

the majority of manipulation tasks.7,8 For a robot in an open and dynamical environment, it is necessary to

learn new knowledge continually over time, as it is impossible to pre-program everything in advance. The

capability to learn skills and knowledge over time without forgetting the previously learned is referred to as

CL.5 Endowing an anthropomorphic hand with the ability to learn grasping continually could have an enor-

mous societal impact. Examples include providing assistance in the household of disabled or elder people

and resorting and packaging varied goods in factories.

Existing learning-based anthropomorphic robotic grasping approaches utilize supervised learning or rein-

forcement learning paradigms, and train the grasping policy with large amounts of annotated data. Grasp

annotations of the training data are collected by humans,9 with simulation10 or physical robot tests.11 Given

enough data, learning-based approaches achieved astonishing grasp ability. Nevertheless, they use large
iScience 26, 106735, June 16, 2023 ª 2023 The Authors.
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Figure 1. Schematic of the design process of neuro-inspired continual anthropomorphic grasping (NICAG)

(Left) The mechanisms concerning lifelong learning, on which we focused. The picture for lateral view of one hemisphere of the brain is adapted from

Kumaran et al.12 (Middle) Computational modeling incorporates focused mechanism into a neuro-inspired continual learning (CL) algorithm. The

correspondence between specific neural mechanism and its computational component is indicated with same color, such as red is for episodic replay. (Right)

Applying the designed CL algorithm into anthropomorphic grasping.
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fixed-prepared dataset to train the grasp model and do not generalize well to novel objects. Furthermore,

the trained grasping models are difficult to improve continually and incrementally over time.

Here, we proposed a neuro-inspired continual anthropomorphic grasping (NICAG) approach that integrates

and adopts several discovered biological neural mechanisms supporting continual lifelong learning, i.e., CLS,

episodic replay, and meta-plasticity. The proposed NICAG approach consists of a CL framework for anthropo-

morphic grasping and a neuro-inspired CL algorithm. Three layers, i.e., data layer, algorithm layer, and applica-

tion layer, are included in the CL framework, thus making CL of anthropomorphic grasping possible. The

neuro-inspired CL algorithm prevents forgetting and preserves grasp knowledge by replaying weakly learned

information and knowledge distillation on strongly learned information, consequently, the anthropomorphic ro-

botic hands can learn to grasp different objects continually and incrementally over long sequential grasp stream.

We validate the proposed approach through dataset experiments and simulated experiments. Compared with

other methods, our NICAG approach not only achieves better CL capability with lower average loss and forget-

ting but also gets a higher success rate (SR) for grasping. It indicates that our approach performs better on alle-

viating forgetting and preserving grasp knowledge. The proposed system offers an approach for endowing

anthropomorphic robotic hands with the ability to learn to grasp different objects continually and incrementally

over time and has great potential to make a profound impact on robots in households and factories. The con-

tributions of this paper are as follows.

1. A NICAG approach incorporates several discovered biological mechanisms of lifelong learning.

2. A CL framework of anthropomorphic grasping that includes data layer, algorithm layer, and applica-

tion layer. It makes CL of anthropomorphic grasping possible.

3. A neuro-inspired CL algorithm that prevents forgetting and preserves grasp knowledge by replaying

weakly learned information and knowledge distillation on strongly learned information, thus the

anthropomorphic robotic hands can learn to grasp different objects continually and incrementally

over long sequential grasp stream.

4. A validation of the proposedNICAGapproach through dataset experiments and simulated experiments,

demonstrating our method achieves better performance than state-of-the-art CL methods. It not only

achieves better CL capability with lower average loss and forgetting but also gets higher SR for grasping.

RESULTS

The three focused biological neural mechanisms supporting continual lifelong learning, i.e., CLS, episodic

replay, andmeta-plasticity, have been well described in ref.1,2,3,4,6 We propose our NICAG approach based

on these mechanisms. The design process of our NICAG approach is shown in Figure 1. We will describe

the CL framework of anthropomorphic grasping, the neuro-inspired CL algorithm and experimental results

in the following.
2 iScience 26, 106735, June 16, 2023



Figure 2. Continual learning framework of anthropomorphic grasping
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The problem and the continual learning framework of anthropomorphic grasping

To enable anthropomorphic robotic hands to learn to grasp objects continually over time, we design a

neuro-inspired CL framework for anthropomorphic grasping (NICAG-framework), which is shown in Fig-

ure 2. There are three layers in the NICAG-framework: data layer, algorithm layer, and application layer.

Data layer is responsible for generating the stream of anthropomorphic grasping experiences. Algorithm

layer trains the grasp model based on information from data layer. Application layer applies trained grasp

model to objects in the field, those objects with bad grasps are sent to the data layer for better learning.

Formally, in the NICAG-framework, a CL algorithm ACL is expected to update its internal state, e.g., its in-

ternal grasp model Mg and knowledge base representing as specific data structures, based on a non-sta-

tionary sequentially accessible stream of anthropomorphic grasping experiences E = ðe1;e2.;ei;.;enÞ.
The objective of ACL is to improve its performance on a set of grasp metrics ðp1;.;pmÞ as evaluated on a

test stream of experiences ðet1;.;etnÞ.

With respect to the stream of anthropomorphic grasping experiences E = ðe1;e2.;ei;.;enÞ, the i-th expe-

rience consists of ei = fCPk ;gkD
ni
k = 1g, where each pair constitutes a grasp example consists of a point cloud

Pk of the observed object, and a grasp gk . The grasp is defined as g = fp;qg. The hand wrist pose p is

given in special Euclidean group SEð3Þ, consisting of the translation t = ½tx ; ty ; tz � and orientation quater-

nion q = ½qw ;qx ;qy ;qz �. The hand joint configuration q is denoted by the actual degree of freedom of

the anthropomorphic robot hand. In this work we use anthropomorphic robot hand DLR/HIT Hand II, of

which q˛R20 .
iScience 26, 106735, June 16, 2023 3



Figure 3. Schematic view of the proposed method
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Within the learning framework, this paper proposes a neuro-inspired CL algorithm ACL. It is used to update in-

ternal graspmodelMg and knowledge base. The graspmodelMg takes point cloudP of the observed object as

input and predicts high quality grasps. The knowledge base is represented as a memory buffer M and a last

trained model. The details of the neuro-inspired CL algorithm ACL are provided in the next subsection.
The neuro-inspired continual learning algorithm

We first describe our neuro-inspired CL algorithmACL at a high level here. ACL prevents forgetting and pre-

serves grasp knowledge in both sample-space and function-space. Replaying weakly learned information is

for preserving grasp knowledge in sample space, while knowledge distillation on strongly learned informa-

tion is for keeping knowledge in function-space. The schematic view of the proposed algorithm is given in

Figure 3. It consists of three major steps: memory retrieval based on learnability criterion, model update by

replay weakly learned information and knowledge distillation on strongly learned information, andmemory

update with weakly learned sample selection and diversity-based sampling. In the following subsections,

we first introduce the learnability criterion, and then provide details of three major steps.

Learnability criterion

To indicate whether a training sample is strongly learned or weakly learned, we adopt the learnability criterion

fromSun et al.,13 whichmeasures howmuch thegraspmodelMg can explain the training sample CP+;g+D once
it has absorbed its information in the memory. Adapted from Sun et al.,13 we define the learnability as follows:

slearnðCP+;g+D;MÞ = log p
�
g0
+

��g+;gM;P+;PM
�jg0

+
= g+

(Equation 1)

where, g0
+ and g+ are used to represent two realizations of the same random variable describing a grasp.

Due to the used grasp model is a variational autoencoder (VAE) based generative model, after the grasp

model Mg have visited a grasp experience, the learnability of sample CP+;g+D with respect to Mg is calcu-

lated specifically as a quantity related with its loss:

slearn
�
CP+;g+D;Mg

�
= e�LðCP+ ;g+D;MgÞ (Equation 2)

where LðCP+;g+D;MgÞ is the loss of sample CP+;g+D after passing through the grasp model Mg. The infor-

mation of memory buffer M in Equation 1 has been incorporated into the grasp model Mg during the

training process on the latest visited grasp experience.

Memory retrieval based on learnability criterion

Based on learnability score, there are two parts in memory buffer M: weakly learned samples Swl and

diverse strongly learned samples Ssl . They are with same size jMj
2 , where jMj is the size of memory buffer

M. The memory buffer is updated once an experience was learned, details are in Section "memory update

with weakly learned sample selection and diversity-based sampling". For each incoming mini-batch Bj
4 iScience 26, 106735, June 16, 2023
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drawn from current grasp experience ei, the memory retrieval step randomly selects
jBjj
2 weakly learned

samples (denoted as Bwl
j ) and

jBjj
2 diverse strongly learned samples (denoted as Bsl

j ) from the memory buffer

M,
��Bj

�� is the batch size. To enhance the diversity of retrieved samples, 3D data augmentation on Bwl
j and

Bsl
j are applied. Operations for 3D data augmentation include jitter, dropout and rotation. Jitter operation

adds a clipped Gaussian noise with zero mean and standard deviation s to the position of each point.

Dropout augmentation throw away points randomly with max ratio rmax . And rotation augmentation

randomly rotates the object Pk and grasp gk along three axes. The retrieved and augmented samples

are used for updating grasp model Mg, as described in Section "model update by replay weakly learned

information and knowledge distillation on strongly learned information".

Model update by replay weakly learned information and knowledge distillation on strongly learned
information

To preserve grasp knowledge in sample space, we replay the retrieved weakly learned samples Bwl
j , the loss

of weakly learned information replay is defined as:

Lreplay = L
�
Bwl
j ;Mg

�
(Equation 3)

To keep grasp knowledge in function-space, we apply knowledge distillation on strongly learned samples

Bsl
j . With respect to the strongly learned samples, it is expected that the current grasp model Mi

g and the

previous grasp model Mi� 1
g encodes latent code and generate final grasp in the same way. We utilize a

KL-divergence loss to enforce the latent code distributions of Mi
g and Mi� 1

g to be close, and use a recon-

struction loss to encourage the output ofMi
g andMi� 1

g to be same. The KL-divergence loss and the recon-

struction loss are formulated in Equations 4 and 5. The loss of knowledge distillation consist of two terms,

i.e., the KL-divergence loss and the reconstruction loss, and is defined in Equation 6.

Lkl = KL
�
Q
�
Ei

�
Bsl
j

�����P
�
Ei� 1

�
Bsl
j

���
(Equation 4)

whereEi andEi� 1 are the encoders of current graspmodelMi
g and the previousgraspmodelMi� 1

g , respectively,

KLðQ k PÞ is the Kullback-Leibler (KL) divergence tomeasure how different these two distributionsQ and P are.

Lr = lv
1

N

XN

k = 1

����Mi
g

�
Bsl
j

�V

k
� Mi� 1

g

�
Bsl
j

�V

k

����
2

2

þ lq $

����Mi
g

�
Bsl
j

�q

� Mi� 1
g

�
Bsl
j

�q
����
1

(Equation 5)

The reconstruction loss is based on the reconstructed hand mesh. It consists of two terms: hand mesh

vertices displacement and joint angles error. In Equation 5,Mi
gðBsl

j Þ
V
is the vertices set of the reconstructed

hand mesh, and Mi
gðBsl

j Þ
q
is the joint angle of generated grasps.

Lkd = Lkd

�
Bsl
j ;M

i� 1
g ;Mi

g

�
= lkl $Lkl +Lr (Equation 6)

where Mi� 1
g is the previous version of grasp model, parameters of which just were updated based on the

last experience ei� 1,M
i
g is the current version of grasp model which is visiting the current experience ei . lkl

of Equation 6, lv and lq of Equation 5 are constants to balance the losses.

Combining with the loss of mini-batch Bj drawn from current grasp experience ei , loss of weakly learned

replay, and loss of knowledge distillation on strongly learned information, we perform model update by

optimizing the following loss with respect to the parameters of the grasp model Mg:

Lcl
grasp = L�Bj;Mg

�
+ lreplay $Lreplay +Lkd (Equation 7)

Memory update with weakly learned sample selection and diversity-based sampling

After the grasp model Mg has been trained on a grasp experience, we perform the memory update step.

Firstly, we merge the samples from memory bufferM and samples from the current experience ei as SMW
Sei and calculate their learnability scores according to Equation 1. Secondly, from SMWSei , we select top
jMj
2 samples with lowest learnability score as weakly learned samples, noted as Swl. And then, we select jMj

2

examples from rested samples Srest = SMWSei \Swl descending by learnability score with an interval of

jSrest j=
�
jMj
2

�
, as a result, jMj

2 diverse strongly learned samples are included, which is denoted as Ssl. Finally,

the contents of memory buffer is replaced with the selected jMj samples, i.e., Swl and Ssl.
iScience 26, 106735, June 16, 2023 5



Table 1. Hyperparameters for the compared methods

Methods Hyperparameter grid Tuned hyperparameter

Fine-tune —a —

IID-Offline — —

EWC l : ½0:1; 1; 100� l = 0:1

SI c : ½0:1; 0:5; 1� c = 0:5

ER lreplay : ½0:1; 0:5; 1� l replay = 0:5

ER-RM lreplay : ½0:1; 0:5; 1� lreplay = 0:5

NI-WLb lreplay : ½0:1; 0:5; 1� lreplay = 0:5

NI-WL-RDb lreplay : ½0:1; 0:5; 1� lreplay = 0:5

NI-WL-RMb lreplay : ½0:1; 0:5; 1� lreplay = 0:5

NI-WL-RM-KDb lreplay : ½0:1; 0:5; 1�; lkl ; lq : ½0:1; 0:5; 1�;
lv : ½1; 10; 30�

lreplay = 0:5;lkl = 0:1;lq = 0:5;lv = 30

a‘‘—’’ means not applicable.
bNI-WL, NI-WL-RD, NI-WL-RM, and NI-WL-RM-KD are four variants of our proposed method.
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Experimental results

A validation of the proposed NICAG approach through dataset experiments and simulated experiments,

demonstrating our method achieves better performance than state-of-the-art CL methods. It not only

achieves better CL capability with lower average loss and forgetting but also gets higher SR for grasping.

To validate our proposed NICAG approach, we conduct experiments on both dataset and in simulation

against a set of CL methods. The experiments aim to evaluate the CL capability and the grasp performance

of the NICAG approach.

For evaluation metrics in dataset experiments, Average Loss ðL_iÞ and Average Forgetting ðFÞ are used to

evaluate the CL capability of compared methods. The Average Loss ðL_iÞ is the averaged loss of grasp

model on test sets of learned experiences ðe1;e2.;ei� 1Þ so far after the completion of CL at experience

ei. The Mean Average Loss (mAL) is mean of Average Loss over all experiences ðe1; e2.;enÞ that is defined
in Equation 8. The Average Forgetting ðFÞ is defined upon Average Loss in Equation 9.

mAL =
Xn

i = 1

Li (Equation 8)
F =
1

n � 1

Xn

i = 2

minðLi � Li� 1; 0Þ (Equation 9)
A B

Figure 4. The average loss on test set without random rotation so far measured by the end of each task (object)

(A) 1K buffer size is used for replay related methods.

(B) 5K buffer size is used for replay related methods.

6 iScience 26, 106735, June 16, 2023
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Figure 5. The average loss on test set with random rotation so far measured by the end of each task (object)

(A) 1K buffer size is used for replay related methods.

(B) 5K buffer size is used for replay related methods.
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We use three quantitative metrics for evaluation in simulation: Success Rate (SR), Penetration Depth and

Penetration Volume between the handmesh and the target object. The three usedmetrics keep consistent

with previous literature Mousavian et al.14 and Hasson et al.15 SR is commonly used in grasping tasks to

measure the stability and quality of the generated grasps. For penetration depth and penetration volume,

the implementation of Jiang et al.16 is used. When the hand collides with the target object, the penetration

depth is computed as the maximum of the distances from vertices of hand mesh to the object surface.

We describe the implementation details of all compared CL algorithms here. All CL algorithms are imple-

mented using Avalanche,17 which is an end-to-end CL library based on PyTorch. For IId-Offline, i.e., the

variational grasp generator in DVGG10 (deep variational grasp generation), we use the implementation

of Wei et al.10 For training of the compared methods, 150 epochs is used, and learning rate is set to

0.002 at start and divided by 10 when the validation error plateaus. Batch size is 512. We train all models

on an RTX-3090 GPU. We present the detailed hyperparameters in Table 1.

Results on dataset

To evaluate the CL capability of the proposed neuro-inspired algorithm, we compare it with other sixmethods

on dataset. Details of the dataset are described in Section "dataset" of STAR Methods. The compared

methods include four typical CL methods, namely, elastic weight consolidation (EWC),18 synaptic intelligence

(SI),19 experience replay (ER),20 rainbow memory (ER-RM),21 and two baselines, i.e., Fine-tune and IId-Offline.

Our proposed neuro-inspired CL algorithm includes four variants: NI-WL is the weakly learned replay,

NI-WL-RD is the integration of weakly learned replay and randomly selective ER, NI-WL-RM is the

integration of weakly learned replay and rainbow memory replay, NI-WL-RM-KD is the integration of weakly

learned replay and knowledge distillation on strongly learned information. The description of compared

methods is in Section "description of compared methods" of STAR Methods. We will report and analyze

the evolution of test loss and forgetting along with training, the mAL and average forgetting, and the loss

on the combined test set when the grasp model is finally trained on all grasp experiences, respectively.

Evolution of test loss and forgetting along with training. In Figures 4 and 5, we show how the loss on

test set so far evolve along with seeing more tasks, i.e., seeing more objects. Figure 4 is for the version of

which test set is without random rotation, while Figure 5 is for that with random rotation. The evolution pro-

cesses of test forgetting along with training are shown in Figure 6 (without random rotation) and Figure 7

(with random rotation). The lower and smoother the loss is, the better the corresponding CL method is. So

is the forgetting. From left to right in Figures 4, 5, 6, and 7, memory size changes with 1K–5K. As shown in

Figures 4, 5, 6, and 7, the navie fine-tune has high loss (also high forgetting) and oscillates up and down with

a large attitude, indicating catastrophic forgetting occurs. EWC is even worse than Fineturn under 5K buffer

size, due to the saturation-prone property of regularization methods in the long steam. SI is better than

Fineturn, but is still with high loss, high forgetting, and large oscillation. ER has high loss, high forgetting,

and is with large oscillation when the buffer size is small, such as 1K. With the increasing of buffer size, ER

performs well gradually. ER is with low loss, low forgetting, and small oscillation when big buffer size is
iScience 26, 106735, June 16, 2023 7



A B

Figure 6. The forgetting metric on test set without random rotation so far measured by the end of each task

(object)

(A) 1K buffer size is used for replay related methods.

(B) 5K buffer size is used for replay related methods.
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used, such as with 5K memory buffer. Thanks to the diversity of the replayed samples, ER-RM performs well

under different buffer size. By contrast, the variants of our proposedmethod perform better with lower loss,

lower forgetting, and smaller oscillation. NI-WL-RM-KD achieves best results, which is very close to the IId-

Offline, even with only 1K memory buffer. The visualized tendencies of Figures 4, 5, 6, and 7for alternatives

with and without random rotation are similar, indicating that the proposed method is robust to random

rotation.

Mean average loss and average forgetting. The quantitative results of Figures 4, 5, 6, and 7 are sum-

marized in Table 2, which is provided as the mAL and average forgetting F. Firstly, on test set without

random rotation, compared to EWC, SI, ER, and ER-RM, our proposed NI-WL-RM-KD with small buffer

size 1K shows � 39:6%, � 35:4%, � 53:9%, and � 3:5% relative reduction in mAL, � 90:1%, � 87:4%,

� 90:8%, and � 40:7% reduction in forgetting, respectively. This indicates that the proposed NI-WL-

RM-KD is able to work under small memory cost. Under other buffer size conditions, four variants of

our proposed method, including NI-WL, NI-WL-RD, NI-WL-RM, and NI-WL-RM-KD, consistently outper-

form other CL methods with a large margin in terms of mAL and forgetting both. Second, a similar trend

is shown both on test set without rotation and with rotation, which indicates the robustness of the pro-

posed methods to random rotation. Further, compared to IID-Offline, all CL methods are with more 16%

in mean average losses indicating gap still exists.

Loss on combined test set of finally trained model. In Table 3, we provide the average loss of finally

trained models for all compared methods. The losses are calculated on combined test set or combined
A B

Figure 7. The forgetting metric on test set with random rotation so far measured by the end of each task (object)

(A) 1K buffer size is used for replay related methods.

(B) 5K buffer size is used for replay related methods.
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Table 2. Mean average loss mAL and average forgetting F of compared methods

Methods mALY (TeWoR)a FY (TeWoR) mALY (TeWR)a FY (TeWR)

Fine-tune 7.889 1.368 7.924 1.284

IID-Offline 3.470 —b 3.520 —

EWC 8.199 1.712 8.209 1.754

SI 7.657 1.344 7.686 1.382

BufferSize jMj = 1K

ER 10.723 1.843 10.554 1.749

ER-RM 5.132 0.285 5.169 0.284

NI-WLc 5.630 0.175 5.543 0.175

NI-WL-RDc 5.255 0.215 5.243 0.208

NI-WL-RMc 5.100 0.198 5.089 0.192

NI-WL-RM-KDc 4.950 0.169 5.066 0.194

BufferSize jMj = 5K

ER 5.094 0.406 5.147 0.416

ER-RM 5.077 0.096 5.143 0.092

NI-WL 5.144 0.091 5.197 0.076

NI-WL-RD 4.768 0.071 4.891 0.073

NI-WL-RM 4.855 0.064 4.887 0.068

NI-WL-RM-KD 4.490 0.062 4.511 0.063

BufferSize jMj = 10K

ER 4.975 0.420 4.980 0.412

ER-RM 4.948 0.082 5.035 0.091

NI-WL 4.996 0.082 4.988 0.079

NI-WL-RD 4.810 0.058 4.853 0.066

NI-WL-RM 4.558 0.068 4.574 0.066

NI-WL-RM-KD 4.029 0.069 4.045 0.071

Bold underline, italic underline, and underline font highlights the first place, second place, and third place with same

BufferSize, respectively.
aTeWoR is short for test set without rotation, TeWR is short for test set with rotation.
b‘‘—’’ means not applicable.
cNI-WL, NI-WL-RD, NI-WL-RM, and NI-WL-RM-KD are four variants of our proposed method.
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training set of all experiences. There are four losses for each method, namely, loss on test set without

rotation (Loss-test-w/o-rot), loss on test set with rotation (Loss-test-w/-rot), loss on training set without

rotation (Loss-train-w/o-rot), and loss on training set without rotation (Loss-train-w/-rot). As demon-

strated in Table 3, four losses of Fineturn are quite high and are all above 5.25. As expected lower

bound, losses of IID-Offline are low and below 3.6. Consistent with evolution of test loss along with

training in Figures 4 and 5, EWC has high losses around 6.9 which are all larger than those of Fineturn,

losses of SI are around 4.9 and are slightly lower than Fineturn’s. Losses of ER appear similar

tendency with Figures 4 and 5, is high under small buffer size, while is low under big buffer size.

ER-RM performs better than ER due to its diversity of replay samples. For the variants of our proposed

method, ER-WL-RD gets the most significant drop of loss under 1K buffer size, from 11.267 of ER to

4.356. This indicates the weakly learned plus diverse sapling enhanced the representative and diversity

of replay samples. The full-armed version of our proposed method, i.e., ER-WL-RM-KD, gets the most

top places.

Results in simulation

To illustrate the effectiveness of the proposed approach on continually generating anthropomorphic

grasps with high quality, we conduct simulated experiments in the physics-based simulator MuJoCo.22

58 objects from YCB (yale-cmu-berkeley) dataset23 (seen) and 48 objects from EGAD!24 (unseen) are
iScience 26, 106735, June 16, 2023 9



Table 3. Loss L on combined set (test set or training set) of finally trained models for compared methods

Methods LY (TeWoR)a LY (TeWR)a LY (TrWoR)a LY (TrWR)a

Fine-tune 5.299 5.257 5.298 5.256

IID-Offline 3.519 3.571 3.521 3.572

EWC 6.986 7.071 6.984 7.074

SI 4.899 4.938 4.897 4.934

BufferSize jMj = 1K

ER 11.267 10.982 11.283 10.991

ER-RM 5.186 5.195 5.187 5.192

NI-WLb 5.172 5.061 5.172 5.060

NI-WL-RDb 4.356 4.391 4.358 4.391

NI-WL-RMb 4.766 4.830 4.769 4.831

NI-WL-RM-KDb 4.631 4.782 4.632 4.776

BufferSize jMj = 5K

ER 4.182 4.188 4.182 4.188

ER-RM 4.596 4.759 4.599 4.760

NI-WL 4.740 4.790 4.737 4.792

NI-WL-RD 4.172 4.386 4.170 4.388

NI-WL-RM 4.400 4.319 4.402 4.320

NI-WL-RM-KD 4.162 4.200 4.168 4.197

BufferSize jMj = 10K

ER 3.754 3.799 3.755 3.800

ER-RM 4.616 4.707 4.614 4.704

NI-WL 4.607 4.513 4.609 4.514

NI-WL-RD 4.542 4.510 4.540 4.508

NI-WL-RM 4.182 4.182 4.180 4.180

NI-WL-RM-KD 4.028 4.045 4.029 4.047

Bold underline, italic underline, and underline font highlights the first place, second place, and third place with same

BufferSize, respectively.
aTeWoR is short for test set without rotation, TeWR is short for test set with rotation, while TrWoR is short for training set

without rotation, and TrWR is short for training set with rotation.
bNI-WL, NI-WL-RD, NI-WL-RM, and NI-WL-RM-KD are four variants of our proposed method.
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used. For each object, the completed 3D point cloud is taken as the input of the trained grasp model Mg,

and Mg generates 20 grasps randomly. In the simulator, we perform grasp with generated grasp configu-

ration for all used objects and calculate the metrics, i.e., SR, Penetration Depth, and Penetration Volume

between the hand mesh and the target object. The steps in the physical simulation process are described

in Section "steps for the simulated experiments" of STAR Methods.

In Table 4 and Table 5, the compared results on grasping seen objects from YCB and unseen objects

from EGAD! in the simulation are provided respectively. As shown in Table 4, most top places with

respect to SR on grasping objects from YCB are achieved by our proposed approach. At the same

time, the variants of our proposed method, NI-WL, NI-WL-RD, NI-WL-RM, and NI-WL-RM-KD, are consis-

tently with lower Penetration. Table 5 shows a similar tendency also. Overall, the proposed approach

outperforms other alternatives on grasping object in simulation with higher SR and lower penetration

including depth and volume. Moreover, it is observed that ER-WL for different buffer size, ER-WL-RD,

ER-WL-RM, and ER-WL-RM-KD under 5K and 10K buffer size, outperform IID-Offline for unseen

EGAD! object dataset, perhaps due to the bias from the dominant objects in IID-Offline. Qualitative re-

sults shown in Figures 8 and 9 demonstrate that our proposed method is able to generate diverse

reasonable grasps.
10 iScience 26, 106735, June 16, 2023



Table 4. Compared results on grasping seen objects from YCB in simulation

Methods P-Deptha ðcmÞY P-Volumea
�
cm3

�
Y Success Rate ð%Þ[

Fine-tune 0.824 9.142 32.8

IID-Offline 0.642 7.273 62.0

EWC 0.714 8.530 23.3

SI 0.733 8.663 33.6

BufferSize jMj = 1K

ER 1.262 23.204 41.4

ER-RM 0.895 11.928 49.3

NI-WLb 0.516 6.115 54.7

NI-WL-RDb 0.755 10.073 45.3

NI-WL-RMb 0.731 9.963 50.6

NI-WL-RM-KDb 0.818 6.413 47.1

BufferSize jMj = 5K

ER 0.668 8.021 53.0

ER-RM 0.477 5.211 55.2

NI-WL 0.496 5.868 55.5

NI-WL-RD 0.533 6.587 54.7

NI-WL-RM 0.531 5.908 54.5

NI-WL-RM-KD 0.613 4.400 55.4

BufferSize jMj = 10K

ER 0.608 6.340 55.4

ER-RM 0.455 4.703 55.9

NI-WL 0.512 5.720 52.7

NI-WL-RD 0.438 4.458 54.6

NI-WL-RM 0.482 5.201 53.1

NI-WL-RM-KD 0.661 4.355 51.3

Bold underline, italic underline, and underline font highlights the first place, second place, and third place with same

BufferSize, respectively.
aP-Depth is short for Penetration Depth, P-Volume is short for Penetration Volume.
bNI-WL, NI-WL-RD, NI-WL-RM, and NI-WL-RM-KD are four variants of our proposed method.
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DISCUSSION

In this work, the problem of continual anthropomorphic grasping is considered. In particular, a NICAG

approach is developed, which incorporates several discovered biological neural mechanisms

supporting continual lifelong learning and consists of a CL framework of anthropomorphic grasping and

a neuro-inspired CL algorithm. The experiments carried out on dataset and in simulation provide encour-

aging results, showing that this approach achieves better CL capability with lower average loss and forget-

ting, but also gets higher SR for grasping, with reference to some CLmetrics and grasp quality metrics. The

proposed system offers an approach for endowing anthropomorphic robotic hands with the ability to learn

to grasp different objects continually and incrementally over time, and has great potential to make a pro-

found impact on robots in households and factories.

Starting from this work, some future directions are worthwhile considering. Firstly, dealing with more task

settings of continual anthropomorphic grasping, one example is CL of anthropomorphic grasping for

different purposes (e.g., tool use, hand over, pick, and place), or with different hands. Secondly, due to rein-

forcement learning could be utilized to reduce repeated failures, integrating supervised learning and rein-

forcement learning into the continual anthropomorphic grasping framework is also a good direction.

Thirdly, developing composite continual anthropomorphic grasping systems that incorporate more bio-

logical mechanisms of lifelong learning and human grasping is of great significance. Some biological

mechanisms to be incorporated include neuromodulation,25 context-dependent perception and gating,26
iScience 26, 106735, June 16, 2023 11



Table 5. Compared results on grasping unseen objects from EGAD! in simulation

Methods P-Deptha ðcmÞY P-Volumea
�
cm3

�
Y Success Rate ð%Þ[

Fine-tune 0.668 5.526 45.2

IID-Offline 0.562 6.951 73.0

EWC 0.446 3.341 32.2

SI 0.535 2.654 44.6

BufferSize jMj = 1K

ER 1.123 17.455 51.9

ER-RM 0.964 20.867 55.5

NI-WLb 0.458 6.874 81.7

NI-WL-RDb 0.760 13.237 65.3

NI-WL-RMb 0.805 16.537 69.4

NI-WL-RM-KDb 0.763 5.822 69.0

BufferSize jMj = 5K

ER 0.677 5.654 65.4

ER-RM 0.448 6.593 78.5

NI-WL 0.486 7.390 76.9

NI-WL-RD 0.513 8.590 77.9

NI-WL-RM 0.645 9.317 73.4

NI-WL-RM-KD 0.536 3.686 76.9

BufferSize jMj = 10K

ER 0.474 3.092 74.0

ER-RM 0.473 6.326 76.6

NI-WL 0.488 6.942 76.0

NI-WL-RD 0.407 5.310 74.1

NI-WL-RM 0.432 5.912 73.8

NI-WL-RM-KD 0.636 5.181 76.5

Bold underline, italic underline, and underline font highlights the first place, second place, and third place with same

BufferSize, respectively.
aP-Depth is short for Penetration Depth, P-Volume is short for Penetration Volume.
bNI-WL, NI-WL-RD, NI-WL-RM, and NI-WL-RM-KD are four variants of our proposed method.
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and cognition outside the brain.27 Finally, the development of realistic test environments that specifically

address CL capabilities of anthropomorphic grasping is another crucial factor for the advancement of

continual grasping technology and need to be explored further.
Limitations of the study

Our approach only utilizes simulated data to improve the grasp performance and it is validated on dataset

and in a simulator. Our demonstration here can be the first step toward a combination of neuro-inspired CL

and anthropomorphic grasping. In the future, it not only needs to validate our approach on real robotics

but also needs to find more sophisticated and effective methodologies that enable performance improve-

ment using the data collected from both real task executions and simulators.
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A B

C D

Figure 8. Qualitative grasps generated by NI-WL-RM-KD with 5K memory buffer on 4 objects from YCB object set

(A) Grasps for object ycb 065-f cups scaled.

(B) Grasps for object ycb 025.

(C) Grasps for object ycb 011 banana scaled.

(D) Grasps for object ycb 052 extra large clamp scaled.
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B Data and code availability

d METHOD DETAILS

B Anthropomorphic robotic hand

B The used grasp model

B Description of compared methods

B Dataset

B Steps for the simulated experiments
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Figure 9. Qualitative grasps generated by NI-WL-RM-KD with 5K memory buffer on 4 objects from EGAD! object set

(A) Grasps for object G5.

(B) Grasps for object G6.

(C) Grasps for object E1.

(D) Grasps for object E4.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

YCB dataset YCBBenchmarks https://www.ycbbenchmarks.com/object-set/

EGAD! Dougsm https://dougsm.github.io/egad/

Software and algorithms

PyTorch The Linux Foundation https://github.com/

pytorch/pytorch

RRID:SCR_018536

Avalanche ContinualAI https://github.com/ContinualAI/avalanche

MuJoCo DeepMind https://github.com/deepmind/mujoco

Original code This paper https://github.com/WanyiLi/NICAG
RESOURCE AVAILABILITY

Lead contact

Further information and any related requests should be directed to and will be fulfilled by the lead contact,

Peng Wang (peng wang@ia.ac.cn).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data reported in this paper will be shared by the lead contact upon request.

d The code is deposited at the GitHub repository, https://github.com/WanyiLi/NICAG, and is publicly

available as of the date of publication. A link to code has been included in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Anthropomorphic robotic hand

The used anthropomorphic robotic hand is DLR/HIT Hand II.28 It has five modular fingers with four joint and

three active degrees of freedoms. We use a vector with 20 component q˛R20 to denote the joint config-

uration of the hand. The wrist pose p of DLR/HIT Hand II is given in special Euclidean group SEð3Þ, consist-
ing of the translation t = ½tx; ty ; tz� and orientation quaternion q = ½qw ;qx ;qy ;qz �.
The used grasp model

For grasp model Mg of which state expects to be updated by continual learning algorithm ACL, we adopt

the variational grasp generator which is the core module of DVGG10 as a case study. We ignore the two

auxiliary steps including object point completion and iterative grasp refinement for clarity.
Description of compared methods

We compare the proposed approach with four typical continual learning approaches including elastic

weight consolidation (EWC),18 synaptic intelligence (SI),19 experience replay (ER)20 and rainbow memory

(ER-RM),21 and two baselines, namely, Finetune and IId-Offline. EWC18 and SI19 overcome forgetting

with importance-based regularization. ER20 is a simple but effective replay-based approach, which applies

reservoir sampling29 for memory update and random sampling for memory retrieval. Rainbowmemory (ER-

RM)21 enhances diversity of samples in a representative memory via a novel memory management strategy

based on uncertainty and data augmentation. Diverse samples in memory are replayed to overcome
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forgetting. Finetune incrementally finetunes the model without employing any continual learning strategy.

Finetune can not overcome catastrophic forgetting and is considered as the naive baseline. IId-Offline uses

all the samples in the dataset in an offlinemanner to train themodel, and is regarded as the oracle baseline.
Dataset

To evaluate our proposed framework andmethods for continual learning of anthropomorphic grasping, we

construct a sequential anthropomorphic grasping dataset based onWei et al. . The used anthropomorphic

robotic hand is DLR/HIT Hand II. There are more than one million grasp samples on 300 objects. We firstly

remove those objects with few effective grasps, as a result, 278 objects are preserved. And then, we build a

continual grasp learning setting, the data in the setting is modeled as an ordered sequence composed of

278 non-iid learning experiences, a learning experience is a set of grasp samples from an individual object,

as shown in the below image. The complete 3D point cloud of each object is taken as observation P. For
each experience, we split the grasp samples into training set, validation set and test set at the ratio of 6:2:2.

Training set and validation set in the sequence are used to train the grasping models continually, while the

test set is used to test trained models.
Grasp samples of each object in dataset as an experience
Steps for the simulated experiments

The simulated experiments are conducted in the physics-based simulator MuJoCo.22 There are four steps

in the physical simulation process: 1) Fix the object stationary and initialize the robotic hand with a pre-

grasp state, then the hand approaches the object and executes grasping with the generated grasp param-

eters including hand wrist pose and angles of hand joints until a stable state of the simulator reaches. 2)

Then the gravity is present, fingers keep the grasping force till a stable simulator state reaches or the object

falls from the hand. 3) By shaking the hand, the unstable grasps are filtered, and grasps that keep the object

in hand are preserved as successful ones. 4) Calculate the metrics including Success Rate (SR), Penetration

Depth and Penetration Volume, as mentioned in experimental results.
16 iScience 26, 106735, June 16, 2023
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